On the number of ends of rank one locally symmetric spaces
نویسندگان
چکیده
منابع مشابه
On the number of ends of rank one locally symmetric spaces
Let Y be a noncompact rank one locally symmetric space of finite volume. Then Y has a finite number e(Y ) > 0 of topological ends. In this paper, we show that for any n ∈ N, the Y with e(Y ) ≤ n that are arithmetic fall into finitely many commensurability classes. In particular, there is a constant cn such that n-cusped arithmetic orbifolds do not exist in dimension greater than cn. We make thi...
متن کاملCohomogeneity One Actions on Noncompact Symmetric Spaces of Rank One
We classify, up to orbit equivalence, all cohomogeneity one actions on the hyperbolic planes over the complex, quaternionic and Cayley numbers, and on the complex hyperbolic spaces CHn, n ≥ 3. For the quaternionic hyperbolic spaces HHn, n ≥ 3, we reduce the classification problem to a problem in quaternionic linear algebra and obtain partial results. For real hyperbolic spaces, this classificat...
متن کاملEnds of Locally Symmetric Spaces with Maximal Bottom Spectrum
Let X be a symmetric space of non-compact type and Γ\X a locally symmetric space. Then the bottom spectrum λ1(Γ\X) satisfies the inequality λ1(Γ\X) ≤ λ1(X). We show that if equality λ1(Γ\X) = λ1(X) holds, then Γ\X has either one end, which is necessarily of infinite volume, or two ends, one of infinite volume and another of finite volume. In the latter case, Γ\X is isometric to R1 ×N endowed wi...
متن کاملSingular Integrals on Symmetric Spaces of Real Rank One
In this paper we prove a new variant of the Herz majorizing principle for operators defined by K-bi-invariant kernels with certain large-scale cancellation properties. As an application, we prove L p-boundedness of operators defined by Fourier multipliers which satisfy singular differential inequalities of the Hörmander-Michlin type. We also find sharp bounds on the L p-norm of large imaginary ...
متن کاملL-Spectral theory of locally symmetric spaces with Q-rank one
We study the L-spectrum of the Laplace-Beltrami operator on certain complete locally symmetric spaces M = Γ\X with finite volume and arithmetic fundamental group Γ whose universal covering X is a symmetric space of non-compact type. We also show, how the obtained results for locally symmetric spaces can be generalized to manifolds with cusps of rank one.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometry & Topology
سال: 2013
ISSN: 1364-0380,1465-3060
DOI: 10.2140/gt.2013.17.905